#toc { border: 0px solid #000000; background: #ffffff; padding:2px; width:495px; margin-top:10px;} .toc-header-col1, .toc-header-col2, .toc-header-col3 { background: #B5CBFA; color: #000000; padding-left: 5px; width:250px;} .toc-header-col2 { width:75px;} .toc-header-col3 { width:125px;} .toc-header-col1 a:link, .toc-header-col1 a:visited, .toc-header-col2 a:link, .toc-header-col2 a:visited, .toc-header-col3 a:link, .toc-header-col3 a:visited { font-size:100%; text-decoration:none;} .toc-header-col1 a:hover, .toc-header-col2 a:hover, .toc-header-col3 a:hover { font-size:100%; text-decoration:underline; color:#3D3F44;} .toc-entry-col1, .toc-entry-col2, .toc-entry-col3 { padding-left: 5px; font-size:100%; background:#f0f0f0;}

Subscribe

RSS Feed (xml)

Powered By

Skin Design:
Free Blogger Skins

Powered by Blogger

Never ending Universe

Senin, 08 September 2008

Sound Pressure

Sound Pressure

Since audible sound consists of pressure waves, one of the ways to quantify the sound is to state the amount of pressure variation relative to atmospheric pressure caused by the sound. Because of the great sensitivity of human hearing, the threshold of hearing corresponds to a pressure variation less than a billionth of atmospheric pressure.

The standard threshold of hearing can be stated in terms of pressure and the sound intensity in decibels can be expressed in terms of the sound pressure:

The pressure P here is to be understood as the amplitude of the pressure wave. The power carried by a traveling wave is proportional to the square of the amplitude. The factor of 20 comes from the fact that the logarithm of the square of a quantity is equal to 2 x the logarithm of the quantity. Since common microphones such as dynamic microphones produce a voltage which is proportional to the sound pressure, then changes in sound intensity incident on the microphone can be calculated from
DI(dB) = 20 log10(V2/V1)
where V1 and V2 are the measured voltage amplitudes .


Tidak ada komentar:

Poskan Komentar